๐Ÿ”

Technical Showcase

Enter access code to view the presentation

โŒ Incorrect password. Please try again.
โšก

Elite MT5 EA Analysis

Deep Technical Audit & Optimization Strategy

Comprehensive Code Review

Critical Bug Detection

Performance Optimization

Production-Ready Solutions

1 / 12

๐Ÿ“Š Executive Summary

7
Critical Bugs Found
15+
Optimizations Proposed
2,000+
Lines Analyzed
100%
Risk Management Review

๐ŸŽฏ Analysis Scope

๐Ÿ” Code Architecture
Complete structural analysis including separation of concerns, modularity, and maintainability assessment
โš ๏ธ Critical Issues
Identification of code-breaking errors, logical flaws, and performance bottlenecks
๐Ÿ›ก๏ธ Risk Management
Deep dive into position sizing, stop-loss logic, daily limits, and exposure controls
๐Ÿš€ Optimization Strategy
Performance enhancements, code refactoring, and production deployment readiness

System Type: Trend-Biased Mean-Reversion Scalper (EMA200 + Bollinger Bands + RSI)

Timeframes: M1 / M5

Feature Set: Advanced risk management, news filtering, partial closes, Telegram alerts, CSV logging

2 / 12

๐Ÿ—๏ธ System Architecture Analysis

โœ… Strengths Identified

๐ŸŽฏ
Well-structured code with clear separation of concerns
๐Ÿ”’
Comprehensive error handling and input validation
๐Ÿ“ก
Professional use of MQL5 features (CTrade, WebRequest)
๐Ÿ’ผ
Multi-indicator confluence trading logic
๐Ÿ“Š
ATR-based dynamic position sizing
๐ŸŽš๏ธ
Sophisticated partial close system

๐ŸŽจ Core Strategy Design

๐Ÿ“ˆ Bias Filter (Trend Direction)

200-Period EMA

โ€ข Long signals only above EMA

โ€ข Short signals only below EMA

โ€ข Establishes trend-following bias

๐ŸŽฏ Entry Signal (Mean-Reversion)

Bollinger Bands + RSI

โ€ข Buy: Lower BB touch + RSI < 30

โ€ข Sell: Upper BB touch + RSI > 70

โ€ข Overbought/oversold within trend

Strategy Classification: Hybrid Trend-Following Mean-Reversion

Edge: Captures mean reversion moves within confirmed trends, reducing false signals in ranging markets

3 / 12

๐Ÿšจ Critical Issues Detected

CRITICAL - Code Breaking

๐Ÿ”ด Issue #1: Missing StringTrim Function

Impact: EA will fail to compile or crash on initialization when processing news event strings

Location: News parsing functions

โŒ Current Code
// MQL5 doesn't have built-in StringTrim result = StringTrim(newsEvent); // COMPILATION ERROR
โœ… Fixed Solution
// Add custom StringTrim function string StringTrim(string str) { string result = str; StringTrimLeft(result); StringTrimRight(result); return result; }
CRITICAL - Risk Management

๐Ÿ”ด Issue #2: Incorrect VolForRisk Calculation

Impact: Position sizes will be calculated incorrectly, leading to risk exposure much higher or lower than intended

Root Cause: PipValuePerLot returns tick value per 1.0 lot but calculation needs value per point

โŒ Broken Logic
// Incorrect - doesn't account for specific volume double perPoint = PipValuePerLot(s); return riskMoney / (stopPts * perPoint);
โœ… Correct Calculation
// Correct point value calculation double pointValue = SymbolInfoDouble(s, SYMBOL_TRADE_TICK_VALUE) / (SymbolInfoDouble(s, SYMBOL_TRADE_TICK_SIZE) / PointValue(s)); return riskMoney / (stopDistancePrice / PointValue(s) * pointValue);
4 / 12

๐Ÿšจ Critical Issues (Continued)

CRITICAL - Volume Handling

๐Ÿ”ด Issue #3: Incorrect RoundVolume Implementation

Impact: Positions may fail to open if calculated volume is invalid. EA might crash on first few bars if ATR unavailable

โŒ Current (Wrong Order)
// NormalizeDouble applied outside clamping return NormalizeDouble( MathMax(minv, MathMin(maxv, vol)), 2 );
โœ… Corrected Logic
// Round first, then clamp, then normalize double r = MathRound(vol/step) * step; r = MathMax(minv, MathMin(maxv, r)); return NormalizeDouble(r, 2);
HIGH - Logic Flaw

๐ŸŸ  Issue #4: Partial Close Bookkeeping Error

Impact: Second partial close (PC_Close2_Pct) calculated against reduced volume instead of original volume

Problem: Uses unreliable POSITION_VOLUME_MAX instead of tracking original volume

โŒ Unreliable Method
// This doesn't reliably store original volume double origVol = PositionGetDouble(POSITION_VOLUME_MAX); double closeLots = origVol * (PC_Close2_Pct/100.0);
โœ… Proper Volume Tracking
// Store original volume on entry struct PositionRecord { ulong ticket; double originalVolume; }; PositionRecord positionRecords[]; // Reference stored volume for calculations
5 / 12

โš ๏ธ Medium Priority Issues

MEDIUM - Array Management

๐ŸŸก Issue #5: Fixed Array Limits

Impact: Partial close tracking arrays have fixed size (256) that could overflow in edge cases

// Current - Fixed size arrays ulong T1HitTickets[256]; int T1Count = 0; ulong T2HitTickets[256]; int T2Count = 0; // Recommended - Dynamic arrays ulong T1HitTickets[]; int T1Count = 0; ulong T2HitTickets[]; int T2Count = 0; ArrayResize(T1HitTickets, 0); // Initialize as dynamic
MEDIUM - Configuration

๐ŸŸก Issue #6: Hard-Coded Magic Number

Impact: Running multiple EA instances on same symbol will cause conflicts

โŒ Hard-Coded
// Fixed magic number ulong Magic = 880215;
โœ… Configurable
// Make it an input parameter input ulong Magic = 880215;
MEDIUM - Error Handling

๐ŸŸก Issue #7: Insufficient Trade Error Handling

Impact: EA may silently fail to open/modify positions without alerting trader

// Add comprehensive error handling bool ExecuteTradeWithRetry() { int maxRetries = 3; for(int i = 0; i < maxRetries; i++) { if(Trade.Buy(...)) { return true; } int error = GetLastError(); if(error == ERR_REQUOTE || error == ERR_PRICE_CHANGED) { Sleep(500); // Wait and retry continue; } SendTelegramAlert("Trade failed: " + ErrorDescription(error)); break; } return false; }
6 / 12

๐Ÿš€ Performance Optimizations

โšก Optimization #1: Indicator Caching

Problem: Recalculating ATR Every Tick
// Current - Expensive repeated calculation void OnTick() { double atr = CalcATR(); // Called every tick! // ... rest of logic }
Solution: Cache with Time-Based Invalidation
// Optimized - Cache ATR values double lastATR = 0; datetime lastATRTime = 0; double GetCachedATR() { if(TimeCurrent() - lastATRTime > 60) { // Cache for 1 minute lastATR = CalcATR(); lastATRTime = TimeCurrent(); } return lastATR; }

โœ… Estimated Performance Gain: 60-80% reduction in indicator calculations

โšก Optimization #2: Position Loop Reduction

Problem: Counting Positions Every Tick
// Current - Loop through all positions every tick void OnTick() { int buyCount = 0, sellCount = 0; for(int i = 0; i < PositionsTotal(); i++) { // Count positions... } }
Solution: Event-Based Position Tracking
// Optimized - Update only on trade events int cachedBuyCount = 0, cachedSellCount = 0; datetime lastPosCheck = 0; void OnTradeTransaction() { // Update counts only when trades occur UpdatePositionCounts(); }

โœ… Estimated Performance Gain: 90%+ reduction in position enumeration overhead

7 / 12

๐Ÿ›๏ธ Architecture Enhancements

๐Ÿ“ฆ Recommended Modular Structure

NewsManager.mqh
Dedicated module for news parsing, filtering, and auto-close logic. Handles economic calendar integration and event scheduling.
RiskManager.mqh
Centralized risk calculations including position sizing, ATR-based stops, daily loss limits, and exposure management.
TelegramClient.mqh
Abstracted notification system with message queuing, rate limiting, and formatted trade alerts.
TradeManager.mqh
Handles partial closes, breakeven, trailing stops, and position lifecycle management with error handling.
SessionFilter.mqh
Weekly calendar logic, time-based filters, spread controls, and market hour restrictions.

Benefits of Modular Architecture:

โœ… Improved maintainability and testing

โœ… Easier debugging and error isolation

โœ… Reusable components across multiple EAs

โœ… Cleaner code organization and readability

8 / 12

๐Ÿ›ก๏ธ Enhanced Risk Management

๐Ÿ’Ž Advanced Risk Features

๐Ÿ”— Correlation Protection
Prevent over-exposure to correlated pairs by tracking cross-pair correlation coefficients and limiting concurrent positions
๐Ÿ“‰ Dynamic Risk Adjustment
Automatically reduce risk percentage after losing streaks and increase after winning streaks (Anti-Martingale)
โฐ Time-Based Risk
Reduce position size during high-volatility news periods and increase during stable trading sessions
๐Ÿ’ฐ Equity Curve Protection
Implement equity high-water marks with automatic drawdown limits to protect accumulated profits
๐ŸŽฏ R-Multiple Tracking
Track all trades in R-multiples for consistent risk-reward analysis and performance metrics
๐ŸŒŠ Volatility Filter
Only trade when ATR is above minimum threshold to avoid choppy, low-movement periods

๐Ÿ“Š Proposed Risk Parameters

// Enhanced risk configuration input double BaseRiskPercent = 0.5; // Base risk per trade input double MaxDailyRiskPercent = 2.0; // Maximum daily loss input double MaxCorrelatedExposure = 3.0; // Max % in correlated pairs input int MinATRThreshold = 10; // Minimum ATR in points input bool UseAntiMartingale = true; // Dynamic risk adjustment input double MaxDrawdownPercent = 15.0; // Max DD from equity high

These enhancements transform the EA from a basic scalper into an institutional-grade trading system with multi-layered risk protection

9 / 12

๐Ÿงช Comprehensive Testing Strategy

๐Ÿ“‹ Testing Protocol

Phase 1: Strategy Tester (Historical)
โ€ข Backtest on M1/M5 tick data (minimum 6 months)
โ€ข Test all major news events in historical data
โ€ข Validate partial close and breakeven logic
โ€ข Verify daily stop mechanisms trigger correctly
Phase 2: Demo Account (Forward)
โ€ข Forward test for 2-4 weeks minimum
โ€ข Monitor real-time news filtering performance
โ€ข Validate Telegram alerts and CSV logging
โ€ข Test during different market conditions
Phase 3: Micro Live Account
โ€ข Deploy with minimum lot sizes (0.01)
โ€ข Run for 1-2 weeks with real market execution
โ€ข Verify slippage and spread controls work
โ€ข Monitor for any unexpected behaviors
Phase 4: Full Production
โ€ข Gradually increase to target position sizes
โ€ข Continuous monitoring and optimization
โ€ข Regular performance reviews
โ€ข Ongoing parameter fine-tuning

๐Ÿ“ˆ Key Metrics to Monitor

Win Rate
Target: 55-65%
Profit Factor
Target: > 1.8
Max Drawdown
Target: < 15%
Avg R-Multiple
Target: > 1.5R
10 / 12

๐Ÿ“ฆ Project Deliverables

โœ… What You'll Receive

๐Ÿ“
Corrected & optimized .mq5 source code with all bugs fixed
๐Ÿ“Š
Comprehensive technical documentation (40+ pages)
๐Ÿ”ง
Detailed change log with before/after comparisons
โš™๏ธ
Optimized .set configuration files for different account sizes
๐Ÿงช
Strategy Tester report with backtesting results
๐Ÿ“š
User guide with setup instructions and best practices
๐ŸŽ“
Video walkthrough explaining all changes and improvements
๐Ÿ”’
Source code with modular architecture (separate .mqh files)
๐Ÿ’ฌ
30 days post-delivery support for questions and tweaks

๐ŸŽฏ Quality Guarantees

โœ… Code Quality
โ€ข Zero compiler warnings or errors
โ€ข Professional code formatting and comments
โ€ข Follows MQL5 best practices
โ€ข Passes all internal quality checks
โœ… Testing Verification
โ€ข Backtested on minimum 6 months data
โ€ข Forward tested on demo account
โ€ข All critical functions unit tested
โ€ข Performance reports included
11 / 12

๐Ÿš€ Let's Build Something Exceptional

โฑ๏ธ Timeline

Phase 1: Bug Fixes & Core Optimizations (3-4 days)

Phase 2: Architecture Refactoring (2-3 days)

Phase 3: Testing & Documentation (2-3 days)

Total: 7-10 business days

๐Ÿ’ฐ Investment

Complete Package: $950.00

Includes all deliverables, testing, documentation, and Unlimited support

Payment milestones available

Why Work With Me?

๐ŸŽฏ

Deep Expertise

5+ years in algorithmic trading & MQL4/5 development

โšก

Fast Delivery

Efficient workflow with regular progress updates

๐Ÿ’Ž

Quality Focus

Production-ready code that exceeds expectations

๐Ÿ“ž Ready to Get Started?

Let's schedule a brief call to discuss your specific requirements, timeline, and any questions you might have. I'm confident we can transform this EA into a robust, profitable trading system.

Looking forward to collaborating with you! ๐Ÿค

12 / 12